$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

نویسندگان

  • R. Yaşar Hacettepe University‎, ‎Faculty of Science‎, ‎Department of Mathematics‎, ‎06532‎, ‎Beytepe‎, ‎Ankara‎, ‎Turkey.
  • Y. Kara Hacettepe University‎, ‎Faculty of Science‎, ‎Department of Mathematics‎, ‎06532‎, ‎Beytepe‎, ‎Ankara‎, ‎Turkey.
چکیده مقاله:

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper surfaces in projective spaces over complex numbers and obtain results when the $PI$-extending property is inherited by direct summands. Moreover, we show that under some module theoretical conditions $PI$-extending modules with Abelian endomorphism rings have indecomposable decompositions. Finally, we apply our former results, getting that, under suitable hypotheses, the finite exchange property implies the full exchange property.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$pi$-extending modules via nontrivial complex bundles and abelian endomorphism rings

a module is said to be $pi$-extending provided that every projection invariant submodule is essential in a direct summand of the module. in this paper, we focus on direct summands and indecomposable decompositions of $pi$-extending modules. to this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Endomorphism Rings of Protective Modules

The object of this paper is to study the relationship between certain projective modules and their endomorphism rings. Specifically, the basic problem is to describe the projective modules whose endomorphism rings are (von Neumann) regular, local semiperfect, or left perfect. Call a projective module regular if every cyclic submodule is a direct summand. Thus a ring is a regular module if it is...

متن کامل

Endomorphism Rings of Modules over Prime Rings

Endomorphism rings of modules appear as the center of a ring, as the fix ring of a ring with group action or as the subring of constants of a derivation. This note discusses the question whether certain ∗-prime modules have a prime endomorphism ring. Several conditions are presented that guarantee the primeness of the endomorphism ring. The contours of a possible example of a ∗-prime module who...

متن کامل

Modules with Dedekind Finite Endomorphism Rings

This article is a survey of modules whose endomorphism rings are Dedekind finite, Hopfian or co-Hopfian. We summarise the properties of such modules and present unified proofs of known results and generalisations to new structure theorems. MSC 2010. 16S50, 16D80.

متن کامل

Extending Abelian Groups to Rings

For any abelian group G and any function f : G → G we define a commutative binary operation or “multiplication” on G in terms of f . We give necessary and sufficient conditions on f for G to extend to a commutative ring with the new multiplication. In the case where G is an elementary abelian p-group of odd order, we classify those functions which extend G to a ring and show, under an equivalen...

متن کامل

Endomorphism rings of Abelian varieties and their representations

These are notes of two talks with the aim of giving some basic properties of the endomorphism ring of an Abelian variety A and its representations on certain linear objects associated to A. The results can be found in § 5.1 of Shimura’s book [1], but presented in a completely different way. For completeness, we state some definitions. An Abelian variety over a field k is a proper, smooth, conne...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 43  شماره 1

صفحات  121- 129

تاریخ انتشار 2017-02-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023